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ABSTRACT This paper presents an innovative approach to achieve ultralow-latency convolutional neural
network (CNN) processing, which is critical for real-time image processing applications such as autonomous
driving and virtual reality. Traditional CNN accelerators employing in/near-array-computing (inclusive of
in/near-memory-computing and in/near-sensor-computing) architectures have struggled to meet real-time
requirements due to latency bottlenecks encounteredwith conventional column-parallel processing for image
processing. To address this challenge, we propose a novel, all-digital in-imager global-parallel binary con-
volutional neural network (IIGP-BNN) accelerator. This new approach employs a global-parallel processing
concept, which enables multiply-and-accumulate operations (MACs) to be executed simultaneously within
the imager array in a 2D manner, eliminating the additional latency associated with row-by-row processing
and data access from random access memories (RAMs). In this design, convolution and subsampling
operations using a 3 × 3 kernel are completed within just nine steps of global-parallel processing, regardless
of image size. This results in a theoretical reduction of over 88.5% of repeated row scans compared to
conventional column-parallel processing architectures, thus significantly reducing computing latency. We
have designed and prototyped a 30 × 30 integrated imager and IIGP-BNN accelerator IC using a 0.18 µm
CMOS process. This prototype achieved a latency of 3.22 µs/kernel on the first layer convolution at a power
supply of 1 V and a clock frequency of 35.7 MHz. This represents a latency reduction of 35.6% compared
to the state-of-the-art in/near-imager-computing works. This proposed global-parallel processing concept
opens up the potential for processing high-resolution images in 4K and 8K with the same ultralow latency,
marking a significant advancement in high-speed image processing.

INDEX TERMS Convolutional neural network, ultralow latency, global-parallel processing, in-imager-
computing, image processing.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have recently
advanced considerably within the machine learning (ML)
domain, becoming a piece of crucial innovative tech-
nology in the majority of image and vision processing
tasks [1], [2]. Proposals for CNN accelerators employing
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in/near-array-computing (inclusive of in/near-memory-
computing and in/near-sensor-computing) architectures aim
to achieve superior energy or area efficiency due to their
effective reduction on the computational data loading [3], [6],
especially the in/near-sensor-computing architectures have
shown better energy efficiency and communication latency
performance than in/near-memory-computing architectures
due to the further reduction of data access for raw image and
extracted features [7], [8]. Among various sensors, image
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FIGURE 1. Convolution processing by (a) conventional column-parallel processing, (b) proposed global-parallel processing using
IIGP-BNN architecture and (c) conventional processing MACs in 2D architecture in Eyeriss [27].

sensors (or imagers) can be fabricated with a comple-
mentary metal–oxide–semiconductor (CMOS)-compatible
process over a large scale, which makes the proposal of
in/near-sensor-computing works becoming a trend for CNN
accelerators [9], [14]. The in/near-array-computing proposals
usually necessitate trade-offs involving accuracy and latency.
However, in the context of CNN accelerators, computa-
tion latency is often viewed as a critical metric, especially
for applications contingent on real-time image processing
that necessitates high-speed computing. For instance, past
research illustrates that to prevent noticeable effects on the
performance of autonomous vehicles, the total latency level
should ideally be under 170 ms [15]. Within Virtual Reality
(VR) environments, player performance may be compro-
mised by latencies exceeding 100 ms, suggesting that the
target latency range lies between 50 ms and 100 ms [16]. Cur-
rent CNN technologies face two principal challenges when
applied to real-time image processing. Firstly, an increase in
the depth and size of convolutional layers in recently devel-
oped CNN models elevates computing latency [17]. This rise
in latency makes it challenging for these models to satisfy
the needs of real-time vision applications, considering that
task runtime is governed by convolution latency [18]. Recent
research on prevalent CNN architectures used in image recog-
nition, such as VGG16, shows computing latencies ranging
from 169 ms to 4.3 s—a duration too lengthy for real-time
vision processing [19], [22]. Consequently, it is essential to
reduce the computing latency in each convolutional layer.

Secondly, the necessity for higher image data resolution in
real-time image processing has surged in recent years. The
resolution requirement in the autonomous driving sector has
grown from the conventional Video Graphics Array (VGA,
640 × 480) to 4K (3840 × 2160) [23]. Past research on
machine vision systems and chips suggest that slow process-
ing speed is partly due to the vast amounts of column-parallel
processing that the processing elements (PEs) must exe-
cute, which is ultimately dependent on the image data

array size [24]. To better demonstrate this phenomenon,
Fig. 1 (a) illustrates how multiply-and-accumulate opera-
tions (MACs) function in conventional in-array-computing
CNN circuits when conducting image recognition. Weight
(W) is input into the image data array (X) that capture and
store image pixel values to carry out column-parallel pro-
cessing, employing row-by-row kernel (K) scans (including
right shifts for each row of kernel scans) for the convolution
operation. Subsequently, convolution results are then stored
in additional Random-Access Memories (RAMs) in a 1D
manner [25], [26]. This type of column-parallel processing
must be repeatedly executed to complete the entire MAC
process for the entire data array and the kernel shift is huge,
rendering the convolution latency per kernel to be reliant on
the image data array size. For instance, when a 3 × 3 kernel
is used at a stride of 1 in architectures with column-parallel
processing for 28 × 28 image data processing (using the
MNIST dataset), it’s estimated that the convolution operation
is completed after 26 repetitions of row-by-row kernel scans.
This figure escalates to 1,078 for Full-HD (1920 × 1080)
resolution image processing and 2,158 for 4K resolution
image processing (at the same stride of 1, not considering
other factors such as overfitting), resulting in convolution
latencies that are comparatively over 40× and 80× higher,
respectively. Hence, there is a clear need to reduce the con-
volution latency of high-resolution image processing.

Implementing Multiply-and-Accumulate (MAC) opera-
tions in 2D presents an optimal solution to both identified
issues related to computing latency in CNN processing,
which is emphasized by previous works such as Eyeriss and
Eyeriss v2 [27], [28]. Fig. 1 (b) depicts a proposed concept of
global-parallel processing, contrasting it with the traditional
column-parallel processing method applied in conventional
in/near-array-computing works illustrated in Fig. 1 (a). This
innovative approach simultaneously processes all 2D image
data, eliminating the need for repeated row-by-row kernel
scans that are determined by the image resolution (either
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FIGURE 2. Theoretical reduction in the number of steps in parallel
processing with proposed global-parallel processing concept
(at stride of 1).

the row or the column size) as in conventional in-array-
computing architectures. Tiny kernel shifts are needed in this
proposed global-parallel processing architecture. Instead, the
number of steps required depends solely on the size of the ker-
nel. Furthermore, there are no extra RAMs needed for the
storage of processed results, which is also an advantage of
the proposed architecture. Additionally, Eyeriss [27], [28],
which is considered as a conventional processing MAC in
2D architecture, is also shown in Fig. 1(c). The Eyeriss
adopts the same idea of processing MACs through the whole
map two-dimensionally as this work, with row stationary
dataflow, and is applied in the DNN accelerators instead
of in-array-computing works. As a result, these processing
MACs in 2D significantly curtail computing latency by at
least 88.5%, a reduction correlated with image data reso-
lution as displayed in Fig. 2. This figure also shows the
number of steps of parallel processing that is demanded in
a higher resolution of architectures applying conventional
column-parallel processing and the proposed global-parallel
processing. The convolution latency is cut by 99.7% for Full-
HD resolution (1920× 1080) image processing and by 99.8%
for 4K resolution (3840 × 2160) image processing when
implemented through the proposed global-parallel process-
ing. Moreover, this latency reduction is computed to exceed
99.9% for 8K resolution (7680 × 4320) image processing
using the proposed architecture design. Theoretically, this
results in ultrafast processing suitable for real-time image
processing tasks.

However, another challenge arises when considering the
memory bandwidth limitation [29], necessitating that not
only the convolution operation process, but also data trans-
mission and subsampling operations must be processed in
2D. In this study, we introduce an all-digital in-imager
global-parallel binary convolutional neural network (IIGP-
BNN) architecture that leverages the proposed global-parallel
processing concept depicted in Fig. 1 (b). This IIGP-BNN
architecture integrates a binary CMOS imager circuit with
the proposed IIGP-BNN accelerator, allowing for the capture
of binary image data and processing of the captured data in
2D within the same circuit. The IIGP-BNN architecture is

FIGURE 3. CNN model based on LeNet-5 applied in proposed IIGP-BNN
system.

presented in an all-digital format for the benefit of circuit
design and compatibility with the scaled CMOS process.
The subsampling operation (encompassing both pooling and
activation) is sequentially executed after the completion of
the convolution operation within the same circuit, eliminat-
ing the need to store convolution results which consumes
additional RAMs. To validate this concept, particularly to
verify the two key elements, namely in-imager (II in the IIGP-
BNN) and global-parallel processing (GP in the IIGP-BNN)
in this work, we designed and fabricated a 30 × 30 sized
IIGP-BNN accelerator prototype in a 0.18 µm CMOS pro-
cess. This prototyped integrated circuit (IC) comprises a
30 × 30 binary pixel array and an IIGP-BNN accelerator
capable of processing two layers of both convolution and
sub-sampling operations (with fully-connected layers being
processed off-chip) on the MNIST dataset. Our measure-
ments reveal that this accelerator achieved an ultralow latency
of 3.22 µs/kernel on the first convolution and subsampling
layer at a supply voltage of 1 V, a clock frequency of
35.7 MHz, and a throughput of 4.36 GOPS, thereby reduc-
ing latency by 35.6% compared with current state-of-the-art
in/near-imager-computing work [12].

Specifically, this paper’s primary contributions are
twofold:

1. The paper highlights that current hardware latency
remains excessively lengthy to meet the requirements
of real-time image processing. In response, we propose
a global-parallel processing concept, which theoretically
results in an over 88.5% latency reduction compared to
architectures using column-parallel processing, irrespective
of image resolution.

2. The paper also provides designs and prototypes for
an integrated circuit (IC) that combines an imager and an
ultralow latency, all-digital in-imager global-parallel binary
convolutional neural network (IIGP-BNN) accelerator. Fur-
thermore, thesemeasurements demonstrate that the suggested
accelerator reduces latency on the first convolutional and
subsampling layer by 35.6% in comparison to the state-of-
the-art in/near-imager-computing works.

This paper is organized as follows. Section II introduces the
proposed IIGP-BNN architecture, elaborating on the circuit
design and the functionality of the suggested global-parallel
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FIGURE 4. (a) Overall schematic of proposed IIGP-BNN architecture. (b) Connection between proposed PM-units and AS-units. (c) 3 × 3 kernel
applied in IIGP-BNN architecture.

processing concept. Section III presents the experimental
results. Section IV encompasses discussions and highlights
potential areas for future improvements. Finally, Section V
concludes the paper.

II. DESIGN OF PROPOSED IIGP-BNN ARCHITECTURE
This section elucidates the proposed IIGP-BNN architec-
ture. We begin by presenting a schematic overview of the
system, followed by a comprehensive explanation of the
circuit design. Fig. 3 illustrates the binary CNN model
deployed within the proposed IIGP-BNN accelerator for
MNIST database processing. This model, a customized ver-
sion of LeNet-5, is adapted for the proposed architecture
to perform 3 × 3 kernel convolution and subsampling
operations in 2D, thereby achieving lower latency. The
accelerator executes four layers of both convolution and
subsampling operations, namely C1, S2, C3, and S4, using
fixed-size 3 × 3 kernels. The kernel size on C1 and C3 is
set to 4 and 16 respectively based on a tradeoff between
the kernel size and the image processing accuracy when
training on Python using the MNIST dataset. The com-
puted results from the S4 layer are exported from the
accelerator and subsequently processed by software in this
prototype.

A. OVERALL ARCHITECTURE OF PROPOSED IIGP-BNN
Fig. 4 (a) provides a comprehensive view of the proposed
30 × 30 IIGP-BNN accelerator circuit’s architecture. This
circuit processes image data captured by a binary imager
circuit (consisting of a pixel array) that is integrated into
the accelerator two-dimensionally. The IIGP-BNN archi-
tecture processes Multiply-Accumulate operations (MACs)
within the image data array on a global 2D scale, leading to

a significant convolution latency reduction of 88.5% when
employing the 28 × 28 MNIST dataset. In addition, the
subsampling operations are executed within the same circuit,
obviating the need to store convolution results in additional
RAMs. The proposed architecture integrates a 14 × 14 accu-
mulator & subsampling-units (AS-units) array into the larger
30× 30 pixel &multiplier-units (PM-units) array. As a result,
all convolution and subsampling operations are processed
within the same array, avoiding the need for extra RAM
data access. This theoretically speeds up the computational
process and enhances energy efficiency.

Fig. 4 (b) shows the detailed connection scheme
between PM-units and AS-units. An AS-unit, connected
to a 4 × 4 matrix of surrounding PM-units, is capable of
concurrently processing 3 × 3 convolution and 2 × 2 mean-
pooling operations, as indicated in Fig. 3. The operational
flow of the proposed 30 × 30 IIGP-BNN accelerator circuit
is introduced as follows. Initially, the pixel circuit within the
PM-unit captures image data X11–X33, which is subsequently
multiplied by the weight within the same unit. Following this,
each AS-unit performs an accumulation process, leveraging
multiplication results procured from the surrounding 4 × 4
PM-units. The outcomes, following the subsampling opera-
tion, are preserved within Flip-Flops (FFs) housed within the
AS-unit. During each convolution step, the AS-unit garners
multiplication results solely from the 3 × 3 PM-units in the
connected 4× 4 PM-units array, as dictated by control signals
from outside of the accelerator. The 9-bit weight shift signal
wires, labeled K11–K33, establish connections to all PM-units
within the 30× 30 array. Every fourth PM-unit, both row and
column-wise, shares the same single weight shift signal wire.
The connection rules for the weight shift signals K11–K33 can
be summarized as follows:
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FIGURE 5. Proposed PM-unit circuit in IIGP-BNN architecture.

FIGURE 6. Proposed AS-unit circuit in IIGP-BNN architecture.

For each Ki,j within the range of K11–K33 (where i,
j = 1–3), wire Ki,j will be linked to PM-units in the row of
(3 × m + i) and the column of (3 × n + j), where m, n are
integers ranging from 0 to 9.

This unique signal wire connection scheme allows for
a 3 × 3 kernel scan performed by data shifting across nine
weight shift signal inputs. In the initial convolutional layer C1
and the subsequent subsampling layer S2, results processed
using all four types of kernels, as illustrated in Fig. 3, are
stored within four Flip-Flops (FFs) housed in the AS-units.
After the first subsampling layer S2, stored data are reused
as input data to the second convolutional layer C3. After the
first subsampling layer S2, stored data are reused as input data
to the second convolutional layer C3. Following the second
subsampling layer S4, the computed data are stored in the
shift register and are sequentially output from the accelerator
circuit. The proposed IIGP-BNN circuit completes the con-
volution operation in nine steps of global-parallel processing,
utilizing a 3 × 3 kernel scan. This reduces the number of
processing steps by a theoretical 88.5% compared to the con-
ventional architecture with column-parallel processing when
processing 28 × 28 image data from the MNIST dataset,
as depicted in Fig. 2.

B. DETAILS OF IIGP-BNN CIRCUIT DESIGN
Fig. 5 provides a detailed view of the components inside the
proposed PM-unit cell, which includes a conventional binary

pixel circuit and a multiplier. The binary image data produced
by the pixel circuit is stored in a scan-flip-flop (scan-FF)
prior to the multiplier in each PM-unit. Raw image data can
be retrieved from the accelerator before processing through
the shift register connected by these scan-FFs. An XNOR
gate operates as a binary multiplier in the proposed PM-unit
cell circuit [6]. Fig. 6 depicts the details of the circuit inside
the proposed AS-unit cell, incorporating a 16-input-9-output
select logic structure, an accumulator, an activation function
logic structure, and four flip-flops (FFs) used as memory
storage to reuse the processed data from the S2 layer as data
is inputted into the C3 layer. The 16-input-9-output select
logic structure in each AS-unit chooses the multiplication
results of the MAC operations using a 3 × 3 kernel from
the connected 4 × 4 PM-units. This selection is guided by
a 4-bit step control signal. The accumulator is composed of
a shift register linked to nine scan-FFs and an 8-bit counter,
which triggers at the rising edge of the clock signal. Data
from the shift register is processed by a counting signal
generator, which then permits the counter to count the number
of high voltage level data stored in the shift register’s scan-
FFs. The number of high levels counted by the counter can
be equated to the accumulation of the nine multiplied results.
These results are stored in the scan-FFs in this counter. The
multiplied results from the PM-units are then transferred to
the AS-unit to continue processing the accumulation of the
MAC operation. Subsequently, subsampling operations are
sequentially processed in the same unit. A total of twenty-one
FFs are utilized in a single AS-unit cell, comprising eleven
FFs for the select logic structure, six FFs for the counter, and
four FFs for storing outputs after subsampling.

Fig. 7 illustrates the schematic for the 9-step global-
parallel processing scheme used for the convolution operation
using a 3 × 3 kernel on the C1 layer in the proposed
architecture. The first phase of global-parallel processing
is represented in steps 1 through 3. In these steps, parallel
processing using a 3 × 3 kernel scan is performed across
the entire PM-units array in 2D, controlled by the shift-
ing data from the 9-bit weight shift signal wire K11–K33.
AS-units within a 3 × 3 kernel in each step switch to the
ACTIVE mode, with the remaining units transitioning into
STANDBY mode. Every PM-unit multiplies the image data
and weight in the XNOR gate, transmitting the result to the
ACTIVE mode AS-unit within the corresponding, orange-
framed region to execute accumulation and subsampling
operations. As the circuit progresses from step-1 to step-2,
the 2D-expanded kernel moves one column to the right.
Furthermore, different AS-units will select multiplication
results from PM-units. Concurrently, each AS-unit’s mode
changes based on whether it remains within the orange frame.
AS-units transitioning to STANDBY mode from ACTIVE
mode retain accumulated results from the previous step,
while AS-units shifting to ACTIVE mode from STANDBY
mode continue the accumulation using results stored while
in the previous STANDBY mode. This process repeats in
step-3. Once step-3 is completed, the first phase of the
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FIGURE 7. Nine-step global-parallel processing schematic using the proposed IIGP-BNN architecture.

proposed global-parallel processing is concluded. By this
point, all of the results stored through kernels that scanned
non-overlapping rows in the 30 × 30 image data array have
been processed.

Steps 4 through 6 in Fig. 7 represent the second
phase of global-parallel processing. During this phase, the
2D-expanded kernels shift down by one row relative to their

position in the first phase, and they move right by one column
at each step to execute MACs, just as in the first phase.
Similarly, steps 7 through 9 indicate that the position of the
kernels in the third phase shifts down by one row compared
to the second phase, and the same parallel processing is
performed. The completion of a convolution operation for
a 3 × 3 kernel takes place within three phases in nine steps.
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FIGURE 8. Examples of detailed data flow within sequential convolution and subsampling processing in proposed IIGP-BNN architecture.

If a 5 × 5 kernel is used, this would extend further to a five
phases in twenty-five steps process, regardless of the size of
the image data array.

The global-parallel processing approach in this paper
also has the sequentiality of the subsampling process in
the AS-unit, which eliminates the need to output convo-
lution results to RAMs in 1D as shown in Fig. 1 (a).

The underlying principle can be summarized as follows: The
binary CNN model employed in this study, as depicted in
Fig. 3, utilizes mean-pooling and a binary tanh activation
function to complete the proposed sequential convolution and
subsampling processing using the same AS-unit circuit as
shown in Fig. 6. Contrary to max-pooling, which computes
the maximum of each 2 × 2 convolution result from the C1
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FIGURE 9. Timing chart when processing on the first convolutional layer via a single kernel as in Fig. 8.

layer, mean-pooling calculates the average, as illustrated in
Fig. 3. Suppose the 2 × 2 data, which represents convolution
results after nine rounds of accumulation, are denoted as α, β,
γ , and δ. The output resulting from mean-pooling processing
can then be represented by the following equation:

outpooling = (α + β + γ + δ)/4. (1)

Simultaneously, a binary tanh activation function,
as opposed to the ReLU function, is utilized in the proposed
architecture:

fact.(x) =

{
+1 if x ≥ 0
−1 if x < 0.

(2)

The correlation between the output of the activation function
and the convolution results α, β, γ , and δ can be calculated
by combining equations (1) and (2):

fact.(α, β, γ, δ) =

{
+1 if (α+β+γ +δ)/4≥0
−1 if (α+β+γ +δ)/4<0.

(3)

Equation (3) results in +1 or −1 depending on whether the
numerator of equation (1) is greater than zero or not. There-
fore, equation (3) can be simplified into the below equation
with no accuracy loss of the model in this work:

fact.(α, β, γ, δ) =

{
+1 if (α + β + γ + δ) ≥ 0
−1 if (α + β + γ + δ) < 0.

(4)

In this manner, the mean-pooling operation can be imple-
mented using the same accumulator in the AS-unit through
the non-resetting accumulation of α, β, γ , and δ, which
results in 36 repetitions of accumulation using the counter
shown in Fig. 6.
This paper utilizes the 4 × 4 PM-units, connected to an

AS-unit from PM-unit position (1, 1) to (4, 4) in Fig. 4 (b),
as an example to explain the proposed sequential convolution
and subsampling processing framework in Fig. 8. This figure
illustrates the data flow details and how the subsampling
operations are sequentially managed in the proposed IIGP-
BNN. The shift register, connected via scan FFs, exclusively
receives 3 × 3 multiplication outcomes from 4 × 4 PM-units
through a 16-in-9-out select logic. Subsequently, it serially
produces a counter input into the counter in the AS-unit. The
orange frame signifies a 3 × 3 kernel scanning with weight
W11–W33 on the PM-units array, shifting under the control

of the 9-bit weight shift signal wires K11–K33, as illustrated
in Fig. 4 (b). The 16-in-9-out select logic turns the AS-unit
to the ACTIVE mode if a 3 × 3 kernel fully encompasses
this AS-unit, which is under the command of the 4-bit step
control signal. TheAS-unit solely conducts accumulation and
subsampling in the ACTIVE mode, preserving the results in
the STANDBY mode. Steps 1 to 3 in Fig. 8 elucidate the
data flow of the 4 × 4 array in the initial phase. In step 1,
a 3 × 3 kernel fully envelops these 4 × 4 PM-units, and nine
multiplication outcomes from PM-unit position (1, 1) to (3, 3)
are selected and transmitted by the select logic; they can be
calculated as:

A1
B1
C1
D1
E1
F1
G1
H1
I1


=



W11
W12

W13
W21

W22
W23

W31
W32

W33



×



X11
X12
X13
X21
X22
X23
X31
X32
X33


(5)

In this stage, the 3 × 3 kernel entirely covers the 4 × 4 PM-
units, and the AS-unit transitions into the ACTIVEmode. The
nine results ranging from A1 to I1 are individually stored in
the scan-FFs, creating an input signal for the counter. This can
be interpreted as the convolution result α as per equation (4):

α =

∑
N=A∼I

N1. (6)

In the second step, the 3 × 3 kernel shifts one column to the
right, yet remains within the scope of the 4 × 4 PM-units
array. The product results from PM-unit positions (2, 1) to
(4, 3) are relayed to the select logic, keeping the AS-unit in
the ACTIVE mode. The nine outcomes, A2 through I2, are
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sequentially dispatched to the counter, and can be computed
in a similar fashion:

A2
B2
C2
D2
E2
F2
G2
H2
I2


=



W11
W12

W13
W21

W22
W23

W31
W32

W33



×



X12
X13
X14
X22
X23
X24
X32
X33
X34


(7)

The convolution result, β, is derived after nine consecutive
counting instances utilizing A2 through I2. Following step-2,
the counter’s cumulative result becomes the sum of α and β.

β =

∑
N=A∼I

N2. (8)

In step-3, the kernel shifts one more column to the right,
resulting in no 3 × 3 kernel covering this 4 × 4 array. The
select logic thereby switches the AS-unit to the STANDBY
mode, leaving the result in the counter unaltered.

In a similar manner, during steps-4 and -5, as illus-
trated in Fig. 8, the AS-unit returns to the ACTIVE mode.
The multiplication results A4 through I4 in step-4, and A5
through I5 in step-5, are conveyed to the counter as the
convolution results γ and δ, respectively

γ =

∑
N=A∼I

N4 (9)

δ =

∑
N=A∼I

N5. (10)

In this 4 × 4 PM-units example, the pooling operation for
this kernel concludes in step-5, with the pooling result being
the summation of α, β, γ , and δ. This AS-unit switches to the
STANDBYmode from step-6 through step-9, as displayed in
Fig. 8. In the 30 × 30 PM-units array, the residual AS-units
remain operational until the completion of step-9. Upon the
completion of step-9, the outcomes of the subsampling pro-
cess, derived from equation (4), are stored in the flip-flops
(FFs) within the AS-units. These results can be returned to
the PM-units as input X for the C3 layer, as illustrated in
Fig. 3. Similar operations are executed in the C3 layer using
a 3 × 3 × 4 kernel within the same AS-unit, as depicted in
Fig. 6. The solitary difference is that the counter is required
to increment up to 144 times to complete the convolution in
the C3 layer. Post subsampling processing in the S4 layer,

FIGURE 10. Reductions in (a) computing latency and (b) memory demand
on registers in conventional column-parallel processing and proposed
global-parallel processing architecture.

FIGURE 11. Proposed IC with integrated imager and proposed IIGP-BNN
accelerator.

FIGURE 12. (a) Setup inside the darkroom platform for imager
measurement. (b) PCB board mounted with lens.

the results are preserved in the scan-FFs within the AS-units
and sequentially outputted from the circuit. At this point,
computations by the proposed IIGP-BNN accelerator reach
completion.
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FIGURE 13. Original images and captured binary images.

Fig. 9 exhibits the timing diagram of the convolution oper-
ation for a single kernel as in Fig. 8. The duration from the
onset of step-1 to the termination of step-9, as dictated by
the clock, is interpreted as the latency for the convolution of
a single kernel. The counter resets following the completion
of the initialization phase, and the 4-bit step control signal
alongside the 9-bit weight shift signal are initiated during the
reset of the scan-FFs. The multiplication outcome is trans-
ferred into scan-FFs, subsequently introducing a clock into
the counter as the scan-FFs transform into a shift register. This
pattern repeats for the ensuing nine steps without resetting
the counter. Following step-9, the activation outcomes are
stored in FFs within each AS-unit. This timing diagram can
be applied to the prototypical 30 × 30 IIGP-BNN circuit and
is also adaptable for larger-scale circuits.

Figures 10 (a) and (b) depict the simulated computing
latency and the memory capacity demand on registers for
accelerators, employing both the traditional column-parallel
processing approach and the newly proposed global-parallel
processing concept, respectively. The application of the pro-
posed architecture results in a 42% reduction in computing
latency, and a 20% decrease in the memory capacity demand
on registers.

III. MEASUREMENT RESULTS
The proposed 30 × 30 integrated circuits (IC), combin-
ing the integrated imager and the IIGP-BNN accelerator,
was fabricated using a 0.18 µm mixed-signal CMOS pro-
cess. Fig. 11 presents the chip microphotograph. The die
size is 2.5 mm × 2.5 mm. The imager circuit, incorpo-
rated into the accelerator IC, employs pixels of dimensions
55 µm × 55 µm. The layout of a single AS-unit is nested
within four PM-units, enabling them to equally share a
110 µm × 110 µm space. To validate the functionality of
the proposed IIGP-BNN architecture, a darkroom platform
was established, demonstrating the imager and digital com-
puting circuits respectively. The measurement in this work
applied ADCMT 6240A as the DC voltage source, Keithley

FIGURE 14. Measured output waveforms from a chip under (a) input
pattern 1 and (b) input pattern 2.

2000 multimeter as the ammeter, and Tektronix MSO58 as
the oscilloscope.

A. MEASUREMENT OF IMAGER CIRCUIT IN PROPOSED IC
A darkroom setup has been established to validate the imager
circuit applied in the proposed IIGP-BNN accelerator IC,
as depicted in Fig. 12. Images representative of numerals
0 through 9, derived from the MNIST dataset, have been
stored in PNG format and displayed on a smartphone screen
(Fig. 12 (a)). The printed circuit board (PCB) side, on which
a camera lens (screw size: M12; focal length: 2.8mm; angle
of view: 115 degrees) is mounted over the chip, is directed
towards the screen (Fig. 12 (b)). The separation between
the lens and the screen can be appropriately adjusted by
altering the height of both two stands. The imager outputs
raw data serially via the shift register, connected by FFs
of the PM-units, and these data are captured and analyzed
using a pattern analyzer. Fig. 13 exhibits the original and
binary images of numerals 0 to 9, as captured by the imager
circuit. This imager circuit (refer to Fig. 5), integrated into
the proposed fully digital IIGP-BNN accelerator, was tested
under a supply voltage (VDD) of 1V, pixel exposure time of
20 ms, and a reference voltage (VREF) of 0.843V. Binary
images of numbers from 0 to 9 can be captured successfully
at a frame rate of 50 fps. It’s worth noting that the imager
circuit utilized in this work could be substituted with any
other imager circuit without impacting the functionality of
the proposed IIGP-BNN accelerator circuit.

VOLUME 11, 2023 74373



R. Wang et al.: Integrated Imager and 3.22 µs/Kernel-Latency All-Digital IIGP-BNN Accelerator

FIGURE 15. Measured VDD dependencies of (a) maximum clock
frequency, (b) latency per kernel, (c) power consumption, (d) core energy
efficiency, and (e) total energy efficiency of proposed IIGP-BNN
accelerator IC.

B. MEASUREMENT OF COMPUTING CIRCUIT IN
PROPOSED IC
The digital signal inputs (including weight signal inputs) and
outputs received from the chip were generated and assessed

using the PXIe-6570 digital pattern generator from National
Instruments. The chip’s output signal was captured, then ana-
lyzed using the waveform capture function on Digital Pattern
Editor software, and then verified through Python programs.
Fig. 14 (a) and (b) display two sample waveforms recorded
by the oscilloscope under different input signal patterns. The
waveforms were evaluated with a VDD of 1V, as well as a
peak clock frequency of 35.7 MHz. The output signal data is
distinguished by the clock signal on the output shift register,
which represents computed results after the S4 layer in Fig. 3.
The output signal levels (0 or 1) from the chip are in complete
match with the simulated results, which indicates the validity
of the proposed IIGP-BNN accelerator IC.

Figs. 15 (a) through (e) showcase the measured VDD
(ranging from 0.3V to 1V) dependencies of the maximum
clock frequency, the latency per kernel, power consumption,
core energy efficiency, and total energy efficiency (inclu-
sive of I/O power) of the proposed IIGP-BNN accelerator
IC, respectively. At a VDD of 0.4V and a peak frequency
of 379 kHz, the latency per kernel on the C1 and S2 lay-
ers was calculated to be 304 µs. The energy efficiency on
the C1 and S2 layers peaked at 15.7 TOPS/W (core) and
9.23 TOPS/W (total). Similarly, the energy efficiency on
the C3 and S4 layers reached peak values of 7.74 TOPS/W
(core) and 4.62 TOPS/W (total) at the same VDD. The cir-
cuit’s power was measured to be 5.02 µW, and the circuit’s
throughput was calculated to be 46.33 MOPS. At a VDD
of 1V, the energy efficiency reached 2.52 TOPS/W (core)
and 1.57 TOPS/W (total) on the C1 and S2 layers, with a
maximum frequency of 35.7MHz, a power of 2770µW, and a
throughput of 4.36 GOPS. The latency of the convolution per
kernel was calculated as 3.22 µs, an 35.6% reduction com-
pared with state-of-the-art in/near-imager-computing work
[12]. The energy efficiency reached 1.64 TOPS/W (core) and
0.88 TOPS/W (total) on the C3 and S4 layers.

IV. DISCUSSION
Considering the information asymmetry on the latency of
macro’s I/O caused by the huge gap in quantity of data move-
ment between input data and weight data when comparing
in-sensor-computing and in-memory-computing due to their
feature of input stationary and weight stationary [30], [32],
to provide a comprehensive comparison, Table 1 focuses
on the results of recent works on in/near-imager-computing
CNN accelerator circuits for image processing. In this work,
we proposed a novel global-parallel processing concept to
achieve ultralow latency by processing convolution opera-
tions in 2D. This concept is successfully verified by the
first IIGP-BNN prototyped IC. The prototyped IC completes
the first convolutional layer using a 3 × 3 kernel in only
3.22 µs, reducing the latency/kernel by 35.6% on the first
convolutional layer compared with state-of-the-art in/near-
imager-computing work [12].

The latency of the BNN model in this work was analyzed
under the environment of Anaconda 3 Jupyter Notebook;
CUDA version 11.3; CPU i7-11700 @ 2.50 GHz; GPU
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TABLE 1. Comparison of Previous In/Near-Imager-Computing Accelerators and Our Accelerator.

GeForce RTX 3060. The MNIST test dataset was applied in
the analysis by performing 10 rounds of inference, with each
round consisting of 1000 images. The average latency results
were obtained as 0.38907 s on the first layer (0.25256 s for
the C1 layer and 0.13651 s for the S2 layer), 0.18933s on
the second layer (0.08618 s for the C3 layer and 0.10315 s
for the S4 layer), 0.00174 s for flatten and 0.028365 s for
fully connected (FC) layers. Considering that the form of
the data output of this circuit has completed flatten process,
the total latency of the complete model can be approximated
as 12.88 µs + 202.56 µs + 28365 µs = 28580.44 µs ≈

28.58 ms, (608.505 ms in GPU) which achieves the latency

reduction of 99.96%on the convolutional layers (215.44µs in
this work from 578.4 ms in GPU) and 95.30% on the overall
system (28.58 ms in this work from 608.505 ms in GPU)
compared to GPU.

Another comparison between systems that adopt the con-
cept of processing convolution two-dimensionally instead of
row-by-row is presented in TABLE 2. Compared to Eyeriss’s
works, the prototyped architecture is not compatible with
more models at this stage. However, it still shows potential
in ultralow latency processing of models with larger maps
as well as image-capturing functionality in the same circuit.
As the in-sensor-computing architectures serve better as the
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TABLE 2. Comparison of Previous Accelerators Employed Concept of Processing Convolution in 2D and Our Accelerator.

interface between sensing and other high-level processing
units due to one of its key features of input stationary [7], [30],
the possibility of combining these works by utilizing 3D stack
technology is under consideration, which could additionally
reduce the latency associated with both image data load and
data processing. The proposed IIGP-BNN architecture was
all-digital instead of mixed-signal or all-analog in this work,
which is capable to fabricate the circuits using the finer
CMOS process to achieve better performance on both latency
and energy efficiency.

Our global-parallel processing concept processes input
image data globally in 2D, postulating that this method could
theoretically manage 4K or even 8K image data with identical
convolution latency per kernel on the initial convolutional
layer. Additionally, when employing this global-parallel pro-
cessing concept, the throughput is estimated to experience a
meteoric increase by over 10000× and over 40000× when
processing 4K and 8K resolution image data, respectively.
This innovative feature guarantees ultralow latency for con-
volutional processing, even at ultrahigh resolution.

In the experimental phase, a total of 10,000 images from
the MNIST dataset were utilized to evaluate the processing
accuracy of the algorithm implemented in the proposed sys-
tem. By employing fixed-size 3 × 3 kernels, mean-pooling,
and a binary tanh activation function, the proposed model
achieved a maximum accuracy of 96.0%. This was made
possible by using three full-precision fully connected layers
with 200, 120, and 10 nodes, as illustrated in Fig. 3.

The prototyped IC in this work was evaluated and designed
to apply a simple BNNmodel because of the limitations of the

TSMC 0.18 µm CMOS process and single chip size within
2.5 mm × 2.5 mm. The circuit size was minimized to solely
operate binary convolutional processing while ensuring the
verification of the two key elements, namely in-imager (II)
and global-parallel processing (GP) in this work. The pixel
circuit in this work performs binary quantization on the out-
put, which limits the applicability of the prototypical IC to
BNN models merely. Applying the prototyped IC directly to
certain scenarios in the case of colored and grayscale images
would result in significant accuracy loss [33]. Therefore,
based on the successful verification of the both two key ele-
ments (II and GP), the envisioned expansion of the proposed
IIGP-BNN architecture includes incorporating compatibility
with pixel circuits that are capable of multi-bit precision out-
put. Meanwhile, the proposed architecture is also projected
to be expanded with multibit precision processing and deeper
convolutional layers to cater to more intricate CNN models
in future research endeavors including applying 3D-stack
technology [24], [34], [36]. Considering the complexity of
wiring caused by a large number of multipliers and multi-bit
precision processing for higher resolutions such as 1080p and
4k, trade-offs may be done in terms of fill factor. However,
this compromise can be significantly mitigated by the finer
CMOS process as mentioned above. An apparent trade-off
exists between on-chip memory demand and chip size, which
we foresee being resolved by leveraging 3D-stack technolo-
gies to stack memory layers [7], [34], [35]. Our proposed
accelerator currently supports convolution operations using
fixed-size 3 × 3 kernels exclusively, and subsampling oper-
ations are also applied in a fixed function. This restricts the
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diversity and accuracy ofmodels compatible with our acceler-
ator. Hence, the development of a programmable architecture
for both kernel size and subsampling function is a key objec-
tive for future research.

V. CONCLUSION
This study presents a prototyped IC including a CMOS image
sensor and a binary convolutional neural network accelerator
implemented inside the pixel array in a 0.18-µm CMOS
technology. The main novelty of this work is the proposal of
the global-parallel processing concept, which parallelize the
convolution operation not only at the level of several rows
of pixels, but at the level of the whole pixel array, therefore
leading to a latency decreased by 35.6% compared to the
state of the art [12]. Importantly, our IIGP-BNN architecture
could theoretically be extended to high-resolution image pro-
cessing such as 4K or even 8K while maintaining the same
latency. This suggests a potential reduction in computing
latency of over 99.9% compared with conventional architec-
tures, as discussed in relation to Fig. 2. Such performance
makes it feasible to meet the requirements for real-time image
processing, thus presenting a significant advancement in the
field.
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